4.6 Article

Implementation of LOCAL algorithm with near-infrared spectroscopy for compliance assurance in compound feedingstuffs

Journal

APPLIED SPECTROSCOPY
Volume 59, Issue 1, Pages 69-77

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1366/0003702052940585

Keywords

near-infrared spectroscopy; NIR; compound feedingstuffs; ingredient percentage; LOCAL algorithm

Ask authors/readers for more resources

Seven thousand four hundred and twenty-three compound feed samples were used to develop near-infrared (NIR) calibrations for predicting the percentage of each ingredient used in the manufacture of a given compound feedingstuff. Spectra were collected at 2 run increments using a FOSS NIRSystems 5000 monochromator. The reference data used for each ingredient percentage were those declared in the formula for each feedingstuff. Two chemometric tools for developing NIRS prediction models were compared: the so-called GLOBAL MPLS (modified partial least squares), traditionally used in developing NIRS applications, and the more recently developed calibration strategy known as LOCAL. The LOCAL procedure is designed to select, from a large database, samples with spectra resembling the sample being analyzed. Selected samples are used as calibration sets to develop specific MPLS equations for predicting each unknown sample. For all predicted ingredients, LOCAL calibrations resulted in a significant improvement in both standard error of prediction (SEP) and bias values compared with GLOBAL calibrations. Determination coefficient values (r(2)) also improved using the LOCAL strategy, exceeding 0.90 for most ingredients. Use of the LOCAL algorithm for calibration thus proved valuable in minimizing the errors in NIRS calibration equations for predicting a parameter as complex as the percentage of each ingredient in compound feedingstuffs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available