4.8 Review

Tailor-made nanoparticles via gas-phase synthesis

Journal

SMALL
Volume 1, Issue 1, Pages 30-46

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.200400021

Keywords

gas-phase reactions; nanoparticles; metal oxides; population balance; process simulation

Ask authors/readers for more resources

Gas-phase synthesis is a well-known chemical manufacturing technique for an extensive variety of nanoscale particles. Since the potential of ultrafine and, in particular, nanoscale particles in high-performance applications has been identified, scientific and commercial interest has increased immensely, thus identifying this field as a most important technology of the future. However, nanomaterials can perform their multifunctional tasks only if they are customized in terms of chemical composition, size, and morphology to suit the application at hand. Profound knowledge of the synthesis and precise process control is crucial in meeting the stringent specifications. Although the gas-phase synthesis of ultrafine materials has been known and commercially exploited for decades, existing knowledge is based almost exclusively on empirical know-how. Process simulation is a very suitable tool for expanding the understanding of the synthesis-relevant processes, particle formation mechanisms, and operating parameters. Based on the resulting expertise some special nanoscale gas-phase products of high innovative potential have been developed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available