4.4 Article

Colloidal microstructure of binary systems and model creams stabilized with an alkylpolyglucoside non-ionic emulsifier

Journal

COLLOID AND POLYMER SCIENCE
Volume 283, Issue 4, Pages 439-451

Publisher

SPRINGER
DOI: 10.1007/s00396-004-1174-4

Keywords

sugar-based emulsifier; lamellar gel phase; lamellar liquid crystals; interlamellar water; skin hydration potential

Ask authors/readers for more resources

The aim of this study was to examine the lyotropic potential of an alkylpolyglucoside mixed emulsifier (Cetearyl glucoside&Cetearyl alcohol), which belongs to the new generation of natural (sugar) surfactants, and to elaborate the potential stabilization mechanism and relation between the colloid microstructure and water distribution within the systems. Polarization and ordinary light as well as transmission electron microscopy, wide and small-angle X-ray diffraction, thermal analysis and rheological measurement were employed for the systems characterization. It was suggested that Cetearyl glucoside&Cetearyl alcohol stabilizes the o/w creams by synergistic effects of viscoelastic hydrophilic gel of lamellar type and lipophilic gel network built up from cetostearyl alcohol semi-hydrates as well as by lamellar liquid crystalline bilayers surrounding the oil droplets. The hydrophilic gel consists of mixed cetearyl glucoside/cetearyl alcohol crystalline bilayers entrapping the water interlamellarly by hydrogen bonding. It is also showed that oil addition into the chosen binary system influences the creams microstructure significantly, which particularly reflects onto the mode of water distribution within the creams and consequently their potential of skin hydration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available