3.8 Article

Preparation and characterisation of poly(lactide-co-glycolide) (PLGA) and PLGA/Bioglass((R)) composite tubular foam scaffolds for tissue engineering applications

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2004.03.002

Keywords

PLGA; bioactive glass; composite; tubular scaffold; foam; tissue engineering

Ask authors/readers for more resources

Polylactide-co-glycolide (PLGA) and PLGA/Bioglass(R) foams of tubular shape have been prepared with a 1 wt% 45S5 Bioglass(R) content. Porous membranes with varying thickness and porosity were fabricated via a thermally induced phase separation process from which tubes of controlled diameter and wall thickness in the range 1.5-3 mm were produced. Scanning electron microscopy (SEM) revealed that the structure of the tubular foams consisted of radially oriented and highly interconnected pores with two distinct pore sizes, i.e. macropores similar to100-mum average diameter and interconnected micropores of 10-50-mum diameter. Foams with Bioglass(R) inclusions showed similarly well-defined tubular and interconnected pore morphology. Cell culture studies using mouse fibroblasts (L929) were conducted to assess the biocompatibility of the scaffolds in vitro. L929 fibroblasts cultured in medium that was pre-conditioned by incubating with PLGA tubes containing Bioglass(R) had a significant reduction in cell proliferation compared with fibroblasts grown in unconditioned medium (P < 0.0001). The PLGA and PLGA/Bioglass(R) tubular foams developed here are candidate materials for soft-tissue engineering scaffolds. holding promise for the regeneration of tissues requiring a tubular shape scaffold. such as intestine. trachea and blood vessels (C) 2004 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available