4.1 Article

Organometallic approach to nanoparticles synthesis and self-organization

Journal

COMPTES RENDUS PHYSIQUE
Volume 6, Issue 1, Pages 117-131

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.crhy.2004.11.008

Keywords

nanoparticle; metal; oxide; magnetic; organometallic; self-organization; nanomaterial

Ask authors/readers for more resources

The use of organometallic precursors allows the synthesis in mild conditions of metal nanoparticles displaying a controlled size, shape and surface environment. This method has been extended to the synthesis of bimetallic magnetic nanoparticles of controlled anisotropy and of semi-conducting oxides. We have furthermore demonstrated recently the ability of these particles to change their size or shape according to the properties of the surface ligands present. This review will focus on the organometallic approach developed in Toulouse towards the synthesis of the particles and the demonstration of the presence and role of the different ligands in the chemistry of the particles. In a second step, we describe the role of Coordination Chemistry to orientate the growth of the particles to control their monodispersity and their shape (spheres, rods, cubes, wires). A special point will be devoted to the self-organization of the particles and to the formation of 3D super-lattices of nanoparticles, a true crystallization process. Finally, some applications in physics and microelectronics will be described. (C) 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available