4.6 Article

Interferon treatment of human keratinocytes harboring extrachromosomal, persistent HPV-16 plasmid genomes induces de novo viral integration

Journal

CARCINOGENESIS
Volume 36, Issue 1, Pages 151-159

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgu236

Keywords

-

Categories

Funding

  1. Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Biomedical Laboratory Research and Development

Ask authors/readers for more resources

HPV persistence is a consistent risk factor in progression of HPV-associated lesions. Interferon therapies have been used to treat such lesions. This study demonstrates that IFN treatment rapidly induces de novo viral integration, potentially inducing cancer progression.Interferons (IFNs) have been used to treat epithelial lesions caused by human papillomavirus (HPV) persistence. Here, we exposed primary human keratinocytes (HFKs) immortalized by persistently replicating HPV-16 plasmid genomes to increasing levels of IFN-gamma. While untreated HFKs retained replicating HPV-16 plasmids for up to 60-120 population doublings, IFN led to rapid HPV-16 plasmid loss. However, treated cultures eventually gave rise to outgrowth of clones harboring integrated HPV-16 genomes expressing viral E6 and E7 oncogenes from chimeric virus-cell mRNAs similar to those in cervical and head and neck cancers. Surprisingly, every HPV-16 integrant that arose after IFN exposure stemmed from an independent integration event into a different cellular gene locus, even within parallel cultures started from small cell inocula and cultured separately for a parts per thousand yen25 doublings to permit the rise and expansion of spontaneous integrants. While IFN treatment conferred a growth advantage upon preexisting integrants added to mixed control cultures, our results indicate that IFN exposure directly or indirectly induces HPV-16 integration, rather than only selects preexisting, spontaneous integrants that appear to be much less frequent. We estimate that IFN exposure increased integration rates by a parts per thousand yen100-fold. IFN-induced HPV-16 integration involved a wide range of chromosomal loci with less apparent selection for recurrent insertions near genes involved in cancer-related pathways. We conclude that IFNs and other potential treatments targeting high-risk HPV persistence that disrupt viral genome replication may promote increased high-risk HPV integration as a step in cancer progression. Therapies against high-risk HPV persistence thus need to be evaluated for their integration-inducing potential.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available