4.5 Article

Advanced tool edge geometry for high precision hard turning

Journal

CIRP ANNALS-MANUFACTURING TECHNOLOGY
Volume 54, Issue 1, Pages 47-50

Publisher

ELSEVIER
DOI: 10.1016/S0007-8506(07)60046-8

Keywords

turning; tool cutting edge; finite element method

Ask authors/readers for more resources

The hard turning process has been attracting interest in different industrial sectors for finishing operations of hard materials. However, it still presents disadvantages with respect to process capability and reliability. In this paper the impact of PcBN tool edge geometry is investigated based on a modelling as well as an experimental approach. The hard turning process is described by means of a 3D simulation of the tool engagement based on the Finite Element Method. The simulation results indicate force and temperature distribution in the tool-chip contact zone for different designs of PcBN tool cutting edge, thus allowing the derivation of criteria for an advanced tool edge design. The recommendations for tool edge geometry modification are experimentally verified. The results suggest that the use of the proposed new tool edge geometry is an effective way to significantly increase tool performance with respect to tool life, material removal rate and part surface quality in high precision hard turning.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available