4.6 Article

Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model

Journal

CARCINOGENESIS
Volume 35, Issue 2, Pages 415-423

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgt321

Keywords

-

Categories

Funding

  1. Department of Defense Prostate Cancer Research Program Award [W81XWH-10-1-0245]
  2. National Institutes of Health, National Cancer Institute [R03CA153961]
  3. American Cancer Society [MRSG-11-019-01-CNE]

Ask authors/readers for more resources

In preclinical animal models, several phytochemicals have shown excellent potential to be used as effective agents in preventing and treating many cancers. However, the limited bioavailability of active agents could be one reason for their restricted usefulness for human consumption. To overcome this limitation, we recently introduced the concept of nanochemoprevention by encapsulating useful bioactive food components for their slow and sustained release. Here, we report the synthesis, characterization and efficacy assessment of a nanotechnology-based oral formulation of chitosan nanoparticles encapsulating epigallocatechin-3-gallate (Chit-nanoEGCG) for the treatment of prostate cancer (PCa) in a preclinical setting. Chit-nanoEGCG with a size of < 200nm diameter and encapsulating EGCG as determined by dynamic light scattering and transmission electron microscope showed slow release of EGCG in simulated gastric juice acidic pH and faster release in simulated intestinal fluid. The antitumor efficacy of Chit-nanoEGCG was assessed in subcutaneously implanted 22R?1 tumor xenografts in athymic nude mice. Treatment with Chit-nanoEGCG resulted in significant inhibition of tumor growth and secreted prostate-specific antigen levels compared with EGCG and control groups. In tumor tissues of mice treated with Chit-nanoEGCG, compared with groups treated with EGCG and controls, there was significant (i) induction of poly (ADP-ribose) polymerases cleavage, (ii) increase in the protein expression of Bax with concomitant decrease in Bcl-2, (iii) activation of caspases and (iv) reduction in Ki-67 and proliferating cell nuclear antigen. Through this study, we propose a novel preventive and therapeutic modality for PCa using EGCG that addresses issues related to bioavailability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available