4.6 Article

Macrophage-derived reactive oxygen species suppress miR-328 targeting CD44 in cancer cells and promote redox adaptation

Journal

CARCINOGENESIS
Volume 35, Issue 5, Pages 1003-1011

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgt402

Keywords

-

Categories

Funding

  1. Okukubo Memorial Fund for Medical Research at Kumamoto University School of Medicine
  2. Medical Research Encouragement Prize of the Japan Medical Association
  3. Japan Society for the Promotion of Science [24591912]
  4. Grants-in-Aid for Scientific Research [25293089, 26293290, 24591950, 24591912, 23791549] Funding Source: KAKEN

Ask authors/readers for more resources

This study revealed a new redox adaptation mechanism that macrophages cause increased CD44 expression through miR-328 suppression, resulting in tumor progression by enhancing ROS defense. miR-328-CD44 signaling mediated by macrophages may represent a novel therapeutic target for gastrointestinal cancer.CD44 is frequently overexpressed in a wide variety of epithelial malignancies including gastrointestinal cancer and causes resistance to currently available treatments. MicroRNAs (miRNAs) are non-coding RNAs that regulate molecular pathways in cancer by targeting various genes. The aim of this study was to investigate the regulation of CD44 expression by miRNAs and to develop new molecular targets in gastrointestinal cancer. We performed miRNA screening in six human gastrointestinal cancer cell lines and identified three candidate miRNAs that could regulate CD44 expression in gastrointestinal cancer. Among these, we focused on miR-328 and examined its functional relevance using growth assays and cytotoxicity assays. CD44 expression was reduced in gastrointestinal cancer cell lines forced to express miR-328, leading to inhibition of cancer cell growth in vitro and in vivo, and impaired resistance to chemotherapeutic drugs and reactive oxygen species (ROS). In contrast, induction of CD44 expression by miR-328 inhibitor led to promotion of cancer cell growth. Furthermore, we revealed that ROS produced by macrophages triggered CD44 expression through suppression of miR-328 in gastric cancer cells. Finally, tumor-infiltrating macrophages (CD68 and CD163) were closely related to both miR-328 downregulation and CD44 upregulation in 63 patients with surgically resected gastric cancer. These findings suggest that macrophages in the tumor microenvironment may cause increased CD44 expression through miR-328 suppression, resulting in tumor progression by enhancing ROS defense. miR-328-CD44 signaling mediated by macrophages may thus represent a potential target for the treatment of gastrointestinal cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available