4.6 Article

Andrographolide induces autophagic cell death in human liver cancer cells through cyclophilin D-mediated mitochondrial permeability transition pore

Journal

CARCINOGENESIS
Volume 33, Issue 11, Pages 2190-2198

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgs264

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [31000775]
  2. National Key Technology R&D Program of China [2012BAD33B08]
  3. Research Fund for the Doctoral Program of Higher Education of China [20103326120006]
  4. Key Project of Chinese Ministry of Education [210086]

Ask authors/readers for more resources

Liver cancer is the third leading cause of cancer death worldwide and about half of the patients with liver cancer require adjuvant therapy after surgical resection. Therefore, development of novel agents to eradicate cancer cells may constitute a viable approach to treat patients with liver cancer. Andrographolide, a diterpenoid lactone isolated from Andrographis paniculata, is known to possess potent antioxidant, anti-inflammatory, antineoplastic and antiviral properties. In this study, we investigated the cytotoxic effect of andrographolide on human liver cancer cells and explored the cell death mechanism. Andrographolide induced a cell death distinct from apoptosis in multiple human liver cancer cells. The death was characterized by autophagy as evidenced by the accumulation of LC3 II and autophagosomes, and the formation of puncta GFP-LC3. This autophagy as well as cytotoxicity caused by andrographolide could be effectively prevented by 3-methyladenine (a chemical inhibitor of autophagy). Mechanistic study indicated that andrographolide induced autophagic cell death by disruption of mitochondrial transmembrane potential and elevation of reactive oxygen species, which were correlated with mitochondrial permeability transition pore Inhibition of cyclophilin D (a component of MPTP) by cyclosporin A or abrogation of its expression by small interfering RNA significantly suppressed the cytotoxicity of andrographolide, suggesting that cyclophilin D may play an important role in mediating andrographolide-induced cytotoxicity. Taken together, our findings unveil a novel mechanism of drug action by andrographolide in liver cancer cells and suggest that andrographolide may represent a promising novel agent in the treatment of liver cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available