4.6 Article

Transcriptional regulation of miR-196b by ETS2 in gastric cancer cells

Journal

CARCINOGENESIS
Volume 33, Issue 4, Pages 760-769

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgs023

Keywords

-

Categories

Funding

  1. National Science Council (Taiwan) [NSC 100-2811-B-001-009, DOH100-TD-C-111-007]
  2. Center of Excellence for Cancer Research at Taipei Veterans General Hospital [DOH 99-TD-C-111-007]
  3. Academia Sinica

Ask authors/readers for more resources

E26 transformation-specific sequence (ETS)-2 is a transcriptional modulator located on chromosome 21, alterations in its expression have been implicated with a reduced incidence of solid tumors in Down syndrome patients. MicroRNAs (miRNAs) are thought to participate in diverse biological functions; however, the regulation of miRNAs is not well characterized. Recently, we reported that miR-196b is highly expressed in gastric cancers. Herein, we demonstrate that miR-196b expression was significantly repressed by ETS2 during gastric cancer oncogenesis. We demonstrate that knockdown of endogenous ETS2 expression increases miR-196b expression. A genomic region between -751 and -824 bp upstream of the miR-196b transcriptional start site was found to be critical for the repression activity. This putative regulatory promoter region contains three potential ETS2-binding motifs. Mutations within the ETS2 binding sites blocked the repression activity of ETS2. Furthermore, knockdown of ETS2 or overexpression of miR-196b significantly induced migration and invasion in gastric cancer cells. In addition, alterations in ETS2 and miR-196b expression in gastric cancer cell lines affected the expression of epithelial-mesenchymal transition-related genes. The levels of vimentin, matrix metalloproteinase (MMP)-2 and MMP9 were drastically induced, but levels of E-cadherin were decreased in shETS2- or miR-196b-transfected cells. Our data indicate that ETS2 plays a key role in controlling the expression of miR-196b, and miR-196b may mediate the tumor suppressor effects of ETS2. We demonstrated that miR-196b was transcriptionally regulated by ETS2 and there was an inverse expression profile between miR-196b and ETS2 in clinical samples. This finding could be beneficial for the development of effective cancer diagnostic and alternative therapeutic strategies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available