4.5 Article

The effect of low temperatures on the photosynthetic apparatus of Quercus ilex subsp ballota at its lower and upper altitudinal limits in the Iberian peninsula and during a single freezing-thawing cycle

Journal

TREES-STRUCTURE AND FUNCTION
Volume 19, Issue 1, Pages 99-108

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00468-004-0368-1

Keywords

chlorophyll fluorescence; holm oak; photochemical and non-photochemical quenching; photoprotection; photosystem II efficiency

Categories

Ask authors/readers for more resources

We investigated the response of the photosynthetic apparatus during an episode of extreme low winter temperature in Quercus ilex subsp. ballota (Desf.) Samp., a typical Mediterranean evergreen species in the Iberian peninsula. Both plants in a woodland located at high altitude (1,177 m. a.s.l.) and potted plants obtained from acorns of the same populations grown at low altitude (225 m. a.s.l.) were analyzed. Net CO2 assimilation rate was negative and there was a marked decrease in photosystem II (PSII) efficiency during winter in leaves of the woodland population (high altitude individuals). These processes were accompanied by increases in non-photochemical quenching (NPQ) and in the de-epoxidated carotenoids within the xanthophyll cycle, mechanisms aimed to dissipate excess energy. In addition, these de-epoxidated carotenoids were largely preserved during the night. There was no chlorophyll bleaching during the winter, which suggests that leaves were not experiencing photoinhibitory damage. In fact, the net photosynthetic rate and the PSII efficiency recovered in spring. These changes were not observed, or were much more reduced, in individuals located at lower altitude after a few frosts. When the response to rapid temperature changes (from 20degreesC to -5degreesC and from -5degreesC to 20degreesC) was studied, it was found that the maximum potential PSII efficiency was fairly stable, ranging from 0.70 to 0.75. The rest of the photosynthetic parameters measured, actual and intrinsic PSII efficiency, photochemical and NPQ, responded immediately to the changes in temperature and, also, the recovery after cold events was practically immediate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available