4.5 Article

An efficient algorithm to compute the landscape of locally optimal RNA secondary structures with respect to the Nussinov-Jacobson energy model

Journal

JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 12, Issue 1, Pages 83-101

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/cmb.2005.12.83

Keywords

RNA; secondary structure; energy landscape; local optimum

Ask authors/readers for more resources

We make a novel contribution to the theory of biopolymer folding, by developing an efficient algorithm to compute the number of locally optimal secondary structures of an RNA molecule, with respect to the Nussinov-Jacobson energy model. Additionally, we apply our algorithm to analyze the folding landscape of selenocysteine insertion sequence (SECIS) elements from A. Bock (personal communication), hammerhead ribozymes from Rfam (Griffiths-Jones et al., 2003), and tRNAs from Sprinzl's database (Sprinzl et al., 1998). It had previously been reported that IRNA has lower minimum free energy than random RNA of the same compositional frequency (Clote et al., 2003; Rivas and Eddy, 2000), although the situation is less clear for mRNA (Seffens and Digby, 1999; Workman and Krogh, 1999; Cohen and Skienna, 2002),(1) which plays no structural role. Applications of our algorithm extend knowledge of the energy landscape differences between naturally occurring and random RNA. Given an RNA molecule a(1),...,a(n) and an integer k greater than or equal to 0, a k-locally optimal secondary structure S is a secondary structure on a(1),...,a(n) which,has k fewer base pairs than the maximum possible number, yet for which no basepairs can be added without violation of the definition of secondary structure (e.g., introducing a pseudoknot). Despite the fact that the number numStr(k) of k-locally optimal structures for a given RNA molecule in general is exponential in n, we present an algorithm running in time 0(n(4)) and space 0(n(3)), which computes numStr(k) for each k. Structurally important RNA, such as SECIS elements, hammerhead ribozymes, and tRNA, all have a markedly smaller number of k-locally optimal structures than that of random RNA of the same dinucleotide frequency, for small and moderate values of k. This suggests a potential future role of our algorithm as a tool to detect noncoding RNA genes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available