4.6 Article

Expression of human papillomavirus type 16 E7 oncoprotein alters keratinocytes expression profile in response to tumor necrosis factor-α

Journal

CARCINOGENESIS
Volume 31, Issue 3, Pages 521-531

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgp333

Keywords

-

Categories

Funding

  1. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [04/04474-8, 04/08428-4]

Ask authors/readers for more resources

Acute expression of E7 oncogene from human papillomavirus (HPV) 16 or HPV18 is sufficient to overcome tumor necrosis factor (TNF)-alpha cytostatic effect on primary human keratinocytes. In the present study, we investigated the molecular basis of E7-induced TNF resistance through a comparative analysis of the effect of this cytokine on the proliferation and global gene expression of normal and E7-expressing keratinocytes. Using E7 functional mutants, we show that E7-induced TNF resistance correlates with its ability to mediate pRb degradation and cell transformation. On the other hand, this effect does not depend on E7 sequences required to override DNA damage-induced cell cycle arrest or extend keratinocyte life span. Furthermore, we identified a group of 66 genes whose expression pattern differs between normal and E7-expressing cells upon cytokine treatment. These genes are mainly involved in cell cycle regulation suggesting that their altered expression may contribute to sustained cell proliferation even in the presence of a cytostatic stimulus. Differential expression of TCN1 (transcobalamin I), IFI44 (Interferon-induced protein 44), HMGB2 (high-mobility group box 2) and FUS [Fusion (involved in t(12; 16) in malignant liposarcoma)] among other genes were further confirmed by western-blot and/or real-time polymerase chain reaction. Moreover, FUS upregulation was detected in HPV-positive cervical high-grade squamous intraepithelial lesions when compared with normal cervical tissue. Further evaluation of the role of such genes in TNF resistance and HPVassociated disease development is warranted.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available