4.7 Article

Organic matter and wetting capacity distribution in aggregates of Chilean soils

Journal

CATENA
Volume 59, Issue 1, Pages 69-78

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.catena.2004.05.005

Keywords

wetting resistance; soil management; aggregate stability

Ask authors/readers for more resources

The wetting capacity of Hapludands and Palehumults under grassland and forest in southern Chile was assessed by measuring contact angles of solid, water and air interfaces. Microaggregates obtained from natural aggregates of two sizes (4 - 6.3 and 10 - 12 mm) were spread onto microscope slides and drops of saturated aqueous KCl solution were placed on the surface of the aggregates. The wetting angles of the drops were measured with a microscope with a horizontal viewing direction and an ocular containing a goniometer. The wetting capacity was determined on layers peeled progressively from the walls of aggregates toward their centres, and the organic matter content of the different aggregate layers was determined. The water stability of the aggregates was measured by dry and wet sieving. Hapludands always showed greater hydrophobicity than Palehumults. The wetting resistance of the soil matrix samples was less than that of the single layers of aggregates. The wetting resistance of aggregates generally increased from the exterior to their centre. The increase was strongest in the topsoil under grassland. Smaller aggregates under both grassland and forest showed a greater hydrophobicity than larger ones. Organic matter content increased towards the aggregate interiors, especially in the fine aggregates. Aggregates with greater water repellence were more stable to dry and wet sieving, especially under forest. Therefore, intensive management decreases wetting resistance and makes the soil less stable. (C) 2004 Elsevier B.V.. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available