4.4 Article

Analysis of gene expression in MOG-induced experimental autoimmune encephalomyelitis after treatment with a novel brain-penetrating antioxidant

Journal

JOURNAL OF MOLECULAR NEUROSCIENCE
Volume 27, Issue 1, Pages 125-135

Publisher

HUMANA PRESS INC
DOI: 10.1385/JMN:27:1:125

Keywords

multiple sclerosis (MS); experimental autoimmune encephalomyelitis (EAE); myelin oligodendrocyte glycoprotein (MOG); gene expression; antioxidants; AD4

Ask authors/readers for more resources

Accumulating data from experimental studies indicate that oxidative stress has a major role in the pathogenesis of multiple sclerosis (MS). It has been suggested that local production of reactive oxygen species, probably by macrophages, mediates axonal damage in both MS patients and the mouse model experimental autoimmune encephalomyelitis (EAE). We have shown previously that our novel brain-penetrating antioxidant, N-acetylcysteine amide (AD4), reduces the clinical and pathological symptoms, including inflammation and axonal damage in myelin oligodendrocyte glycoprotein (MOG)-induced chronic EAE in mice. The aim of this study was to examine the molecular mechanism by which AD4 exerts protection in MOG-induced EAE mice. Therefore, we analyzed gene-expression profile in the spinal cords of MOG-induced chronic EAE mice and compared them with MOG-induced mice treated with AD4, using a cDNA microarray. We found that MOG treatment up-regulated genes encoding growth factors, cytokines, death receptors, proteases, and myelin structure proteins, whereas MOG- and AD4-treated mice demonstrated gene expression profiles similar to that seen in naive healthy mice. In conclusion, our study shows that chronic AD4 administration suppresses the induction of various pathological pathways that play a role in EAE and probably in MS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available