4.2 Review

Serotonin transporter function is an early step in left-right patterning in chick and frog embryos

Journal

DEVELOPMENTAL NEUROSCIENCE
Volume 27, Issue 6, Pages 349-363

Publisher

KARGER
DOI: 10.1159/000088451

Keywords

serotonin; 5-hydroxytryptamine; serotonin transporter; vesicular monoamine transporter; left-right asymmetry; Xenopus; chick

Funding

  1. NCI NIH HHS [CO6RR11244] Funding Source: Medline

Ask authors/readers for more resources

The neurotransmitter serotonin has been shown to regulate a number of embryonic patterning events in addition to its crucial role in the nervous system. Here, we examine the role of two serotonin transporters, the plasma membrane serotonin transporter (SERT) and the vesicular monoamine transporter (VMAT), in embryonic left-right asymmetry. Pharmacological or genetic inhibitors of either SERT or VMAT specifically randomized the laterality of the heart and viscera in Xenopus embryos. This effect takes place during cleavage stages, and is upstream of the left-sided gene XNR-1. Targeted microinjection of an SERT-dominant negative construct confirmed the necessity for SERT function in embryonic laterality and revealed that the descendants of the right ventral blastomere are the most dependant upon SERT signaling in left-right patterning. Moreover, the importance of SERT and VMAT in laterality is conserved in chick embryos, being upstream of the early left-sided gene Shh. Endogenous transcripts of SERT and VMAT are expressed from the initiation of the primitive streak in chick and are asymmetrically expressed in Hensen's node. Taken together our data characterize two new right-sided markers in chick gastrulation, identify a novel, early component of the left-right pathway in two vertebrate species, and reveal a new biological role for serotonin transport. Copyright (c) 2005 S. Karger AG, Basel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available