4.3 Article

Chronic LPS exposure produces changes in intrinsic membrane properties and a sustained IL-beta-dependent increase in GABAergic inhibition in hippocampal CA1 pyramidal neurons

Journal

HIPPOCAMPUS
Volume 15, Issue 5, Pages 656-664

Publisher

WILEY
DOI: 10.1002/hipo.20086

Keywords

interleukin; inflammation; GABA interneurons; glutamate; organotypic; whole-cell patch recording

Categories

Ask authors/readers for more resources

Chronic inflammation has been reported to be a significant factor in the induction and progression of a number of chronic neurological disorders including Alzheimer's disease and Down syndrome. it is believed that inflammation may promote synaptic dysfunction, an effect that is mediated in part by pro-inflammatory cytokines such as interleukin-1 beta (IL-1 beta). However, the role of IL-1 beta and other cytokines in synaptic transmission is still poorly understood. In this study, we have investigated how synaptic transmission and neuronal excitability in hippocampal pyramidal neurons are affected by chronic inflammation induced by exposing organotypic slices to the bacterial cell-wall product lipopolysaccharide (LPS). We report that CA1 pyramidal neurons recorded in whole cell from slices previously exposed to LIPS for 7 days had resting membrane potential and action potential properties similar to those of the controls. However, they had significantly lower membrane resistance and a more elevated action potential threshold, and displayed a slower frequency of action potential discharge. Moreover, the amplitude of pharmacologically isolated postsynaptic gamma-aminobutyric acid (GABA)ergic potentials, but not excitatory glutamatergic postsynaptic potentials, was significantly larger following chronic LPS exposure. Interestingly, co-incubation of the IL-1 receptor antagonist (IL-1Ra) concurrently with LPS prevented the increase in GABAergic transmission, but not the reduction in intrinsic neuronal excitability. Finally, we confirmed that LPS dramatically increased IL-1 beta, and ILAP-dependent IL-6 levels in the culture medium for 2 days before returning to baseline. We conclude that CA1 pyramidal neurons in slices chronically exposed to LPS show a persistent decrease in excitability due to a combined decrease in intrinsic membrane excitability and an enhancement in synaptic GABAergic input, the latter being dependent on IL-1 beta. Therefore, chronic inflammation in hippocampus produces ILAP-dependent and -independent effects in neuronal and synaptic function that could contribute significantly to cognitive disturbances. (c) 2005 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available