4.7 Article

Immobilization of alpha-amylase on Cu2+ chelated poly(ethylene glycol dimethacrylate-n-vinyl imidazole) matrix via adsorption

Journal

REACTIVE & FUNCTIONAL POLYMERS
Volume 62, Issue 1, Pages 61-68

Publisher

ELSEVIER
DOI: 10.1016/j.reactfunctpolym.2004.08.008

Keywords

enzyme immobilization; alpha-amylase; chelating beads; n-vinyl imidazole; beads

Ask authors/readers for more resources

Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) [poly(EGDMA-VIM)] hydrogel (average diameter 150-200 pm) was prepared by copolymerizing ethylene glycol dimethacrylate (EGDMA) with n-vinyl imidazole (VIM). The copolymer hydrogel bead composition was characterized by elemental analysis and found to contain 5 EGDMA monomer units each VIM monomer unit. Poly(EGDMA-VIM) beads had a specific surface area of 59.8 m(2)/g. Poly- (EGDMA-VIM) beads were characterized by swelling studies and SEM. Cu2+ ions were chelated on the poly(EGDMA-VIM) beads, then these beads were used in the adsorption of alpha-amylase from Aspergillus Oryzae in batch system. The maximum alpha-amylase adsorption capacity of the poly(EGDMA-VIM)-Cu2+ beads was observed as 38.9 mg/g at pH 4.0. The K-m values for immobilized alpha-amylase (poly(EGDMA-VIM)-Cu2+) (22.5 mM) was higher than that of free enzyme (15.8 mM). Storage stability was found to increase with immobilization. It was observed that enzyme could be repeatedly adsorbed and desorbed without significant loss in adsorption capacity or enzyme activity. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available