4.5 Article

Encapsulation of islets in rough surface, hydroxymethylated polysulfone capillaries stimulates VEGF release and promotes vascularization after transplantation

Journal

CELL TRANSPLANTATION
Volume 14, Issue 2-3, Pages 97-108

Publisher

SAGE PUBLICATIONS INC
DOI: 10.3727/000000005783983232

Keywords

type 1 diabetes; cell transplantation; bioartificial pancreas; macroencapsulation; modified polysulfone; porcine islets

Ask authors/readers for more resources

The transplantation of encapsulated islets of Langerhans is one approach to treat type 1 diabetes without the need of lifelong immunosuppression. Capillaries have been used for macroericapsulation because they have a favorable surface-to-volume ratio and because they can be refilled. It is unclear at present whether the outer surface of such capillaries should be smooth to prevent, or rough to promote, cell adhesions. In this study we tested a new capillary made of modified polysulfone (MWCO: 50 kDa) with a rough, open-porous outer surface for islet transplantation. Compared with free-floating islets, encapsulation of freshly isolated rat islets affected neither the kinetics nor the efficiency of glucose-induced insulin release in perifusion experiments. Free-floating islets maintained insulin secretion during cell culture but encapsulated islets gradually lost their glucose responsiveness and released VEGF. This indicated hypoxia in the capillary lumen. Transplantation of encapsulated rat islets into diabetic rats significantly reduced blood glucose concentrations from the first week of implantation. This hypoglycaemic effect persisted until explantation 4 weeks later. Transplantation of encapsulated porcine islets into diabetic rats reduced blood glucose concentrations depending on the islet purity. With semipurified islets a transient reduction of blood glucose concentrations was observed (2, 8, 18, 18 days) whereas with highly purified islets a sustained normoglycaemia was achieved (more than 28 days). Explanted capillaries containing rat islets were covered with blood vessels. Vascularization was also observed on capillaries containing porcine islets that were explanted from normoglycaemic rats. In contrast, on capillaries containing porcine islets that were explanted from hyperglycemic rats a fibrous capsule and lymphocyte accumulations were observed. No vascularization on the surface of transplanted capillaries was observed in the absence of islets. In conclusion, encapsulated islets can release VEGF, which appears to be an important signal for the vascularization of the capillary material. The rough, open-porous outer surface of the polysulfone capillary provides a site well suited for vascular tissue formation and may allow a prolonged islet function after transplantation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available