4.2 Article

Simplification of the representation of the organic component of atmospheric particulates

Journal

FARADAY DISCUSSIONS
Volume 130, Issue -, Pages 341-362

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b419435g

Keywords

-

Funding

  1. Natural Environment Research Council [NE/B501104/1, NER/T/S/2002/00498] Funding Source: researchfish

Ask authors/readers for more resources

We present an analysis of recent field data to investigate the variation in the organic component of atmospheric aerosol and its behaviour in the moist environment. In all locations the degree of oxygenation of the organic material increases with photochemical age, as does the particulate hygroscopicity. These changes will generally occur in spatial scales comparable to a single cell in global models at representative boundary layer wind speeds. Using ADDEM, a new model of the equilibrium state of multicomponent aerosol, we show that inorganic component changes must be responsible for the increase in particulate hygroscopicity with photochemical age. It is suggested that a common representation of nearfield and background organic aerosol composition is sufficient to describe the behaviour of organic components in a variety of field experiments; nearfield small mode organics being dominated by a combustion-derived unoxidised signature, whilst the background accumulation mode is more oxygenated and dominates in air masses with a photochemical age of more than a couple of days. This representation may be used within the sub-saturated regime to predict the behaviour of ambient particulates in the moist atmosphere. Whether a similar common representation can be used for cloud activation prediction in supersaturated environments, or for investigation of gas-to-particle partitioning, should be investigated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available