4.8 Article

Infrared study of boron-carbon chemical bonds in boron-doped activated carbon

Journal

CARBON
Volume 54, Issue -, Pages 208-214

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2012.11.031

Keywords

-

Funding

  1. United States Department of Energy [DE-FG02-07ER46411, DE-FC36-08GO18142]

Ask authors/readers for more resources

We report Fourier transform infrared spectroscopy (FTIR) studies of boron-doped activated carbons. The functional groups for hydrogen adsorption in these materials, the boron-related chemical bonds, are studied by comparing the activated carbon materials with and without boron doping. The activated carbon materials are prepared from corncob biomass waste feedstock through KOH activation, yielding adsorbents with a high surface area. Boron atoms are doped into the activated carbon by vapor deposition of decaborane up to a solubility of 6.8 wt.%. Extra boron atoms (2-3 wt.%) are located on the surface of the carbon matrix. Results from conventional FTIR show serious spectral broadenings and band overlaps. To overcome the spectral broadenings and band overlaps, the sample concentration is reduced to a very low weight percent (0.03%) of activated carbon in KBr, and spectra are acquired by using microscopic FTIR. Activated boron carbide is used as a reference material to validate the boron-carbon bond in the nanoporous materials. For activated carbon doped via vapor deposition of decaborane, the substitutions of carbon atoms with boron atoms is confirmed using microscopic FTIR through the appearance of boron-carbon bonds, although it cannot be observed with conventional FTIR. (c) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available