4.8 Article

Platinum embedded within carbon nanospheres for shape selective liquid phase hydrogenation

Journal

CARBON
Volume 57, Issue -, Pages 485-497

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2013.02.024

Keywords

-

Ask authors/readers for more resources

Reactant shape selective catalysis occurs when substrates of different sizes and shapes are consumed at different rates over catalysts that combine molecular sieving transport processes with reaction. By contrast the same substrates react at nearly equivalent rates over catalysts that have large, open pores that do not induce any form of molecular sieving. Here we describe the design and synthesis of reactant shape selective catalysts for liquid phase hydrogenation reactions. Using an emulsion polymerization of furfuxyl alcohol, we have made catalysts that consist of microporous carbon nanospheres within which are embedded platinum nanoparticles. The porosity of the carbon spheres was found to be a key parameter affecting catalyst activity and selectivity; porosity was varied by adding pore forming agents, such as polyethylene glycol with different molecular weights, during synthesis, or by mild oxidation of the as-synthesized catalyst using carbon dioxide. In addition to increasing porosity to reduce mass transfer limitations, a synthesis of smaller carbon spheres (<200 nm) was devised to reduce the micropore diffusion length. Decreasing the particle size of the catalyst by adjusting the surfactant composition during polymerization, improved the effectiveness factor by approximately one order of magnitude making it as active as a comparable standard metal catalyst. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available