4.8 Article

One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties

Journal

CARBON
Volume 49, Issue 10, Pages 3250-3257

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2011.03.051

Keywords

-

Ask authors/readers for more resources

Graphene oxide (GO) is reduced and functionalized with primary amine by a one-pot solvothermal process using ethylene glycol as solvent and ammonia water as nitrogen precursor at 180 degrees C for 10 h. The reaction is featured by nucleophilic substitution of -COOH and C-O-C groups by the ammonia radicals. The presence of primary amine in graphene is identified by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and proton nuclear magnetic resonance spectra. The atomic ratio of N to C can be tuned within 2-10% by changing the ammonia water to GO weight ratio in the reaction system. The resulting amine modified graphene (NH2-G) is an excellent electrochemical material and up to 217.8 F/g high specific capacitance is measured on NH2-G electrode at a current density of 0.4 A/g, superior over commercially available GO, chemically reduced GO, activated carbon, and CNT. The as-prepared NH2-G shows excellent cycle stability, with negligible decrease of specific capacitance value after thousand cycles. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available