4.8 Article

Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes

Journal

CARBON
Volume 48, Issue 14, Pages 3979-3986

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2010.06.044

Keywords

-

Funding

  1. National Science Foundation of China [50876058]
  2. Program for New Century Excellent Talents in University [NCET-10-883]
  3. Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions

Ask authors/readers for more resources

Four different methods, acid oxidation, mechanochemical reaction, ball milling, and grafting following acid oxidation, were used to treat multi-walled carbon nanotubes (MWCNTs). During treatment, hydroxyl groups, carboxylic groups, and amidocyanogen were introduced onto the surfaces of the MWCNTs. The MWCNTs were dispersed into palmitic acid (PA) to prepare phase change composites with high thermal conductivity. Both chemical treatment and ball milling help to break the MWCNT aggregates and to enhance their dispersibility. Measurements show that the thermal conductivity increase of the composites is highly dependent on the MWCNT pretreatment process. We propose that the difference in the interfacial thermal resistance between the MWCNTs and the matrix is due to the difference of the MWCNT surface state caused by different treatment processes. In all the MWCNT/PA composites, the one containing MWCNTs with hydroxyl groups, treated by a mechanochemical reaction, has the highest thermal conductivity increase, which, at room temperature, is up to 51.6% for a MWCNT addition of 1.0%. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available