4.8 Article

Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons

Journal

CARBON
Volume 47, Issue 7, Pages 1617-1628

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2009.01.050

Keywords

-

Ask authors/readers for more resources

We present a new model of adsorption on micro-mesoporous carbons based on the quenched solid density functional theory (QSDFT). QSDFT quantitatively accounts for the surface geometrical inhomogeneity in terms of the roughness parameter. We developed the QSDFT models for pore size distribution calculations in the range of pore widths from 0.4 to 35 nm from nitrogen at 77.4 K and argon at 87.3 K adsorption isotherms. The QSDFT model improves significantly the method of adsorption porosimetry: the pore size distribution (PSD) functions do not possess gaps in the regions of similar to 1 nm and similar to 2 nm, which are typical artifacts of the standard non-local density functional theory (NLDFT) model that treats the pore walls as homogeneous graphite-like plane surfaces. The advantages of the QSDFT method are demonstrated on various carbons, including activated carbons fibers, coal based granular carbon, water purification adsorbents, and mirco-mesoporous carbon CMK-1 templated on MCM-48 silica. The results of PSD calculations from nitrogen and argon are consistent, however, argon adsorption provides a better resolution of micropore sizes at low vapor pressures than nitrogen adsorption. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available