4.8 Article

The pH-dependence of oxygen reduction on multi-walled carbon nanotube modified glassy carbon electrodes

Journal

CARBON
Volume 47, Issue 3, Pages 651-658

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2008.10.032

Keywords

-

Funding

  1. Estonian Science Foundation [7546]

Ask authors/readers for more resources

The pH-dependence of oxygen electroreduction has been investigated on multi-walled carbon nanotube (MWCNT) modified glassy carbon (GC) electrodes. Various surfactants were used in the electrode modification: dihexadecyl hydrogen phosphate, cetyltrimethylammonium bromide, sodium dodecyl sulfate and Triton X-100. Electrochemical experiments were carried out in 0.5 M H2SO4 solution, acetate buffer (pH 5), phosphate buffers (pH 6, 7 and 8), borate buffer (pH 10), 0.01 M KOH, 0.1 M KOH and in 1M KOH solution, using the rotating disk electrode (RDE) method. The oxygen reduction behaviour of MWCNT-modified GC electrodes at different pHs was compared. The RDE results revealed that the half-wave potential (E-1/2) of oxygen reduction was higher in solutions of high pH. At lower pHs (pH < 10) the value of E-1/2 did not essentially depend on the solution pH. A comparison with previous studies on bare GC showed that the pH-dependence of the half-wave potential of oxygen reduction on MWCNT-modified GC electrodes follows a similar trend to that observed for bare GC. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available