4.5 Review

The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes: xylooligosaccharides (XOS), arabinooligosaccharides (AOS), and mannooligosaccharides (MOS)

Journal

CARBOHYDRATE RESEARCH
Volume 360, Issue -, Pages 84-92

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carres.2012.07.017

Keywords

Pretreatments; Oligosaccharides; Xylooligosaccharides (XOS); Arabinooligosaccharides (AOS); Mannooligosaccharides (MOS)

Funding

  1. Washington State University

Ask authors/readers for more resources

Hemicellulosic oligosaccharides are sugar molecules that contain xylose, mannose, and arabinose in variable concentrations ranging from 3 to 10 molecules. These medium and long chain sugars can be classified as non-digestible carbohydrates, thus playing an important role in gastrointestinal health as prebiotics. Their physiological benefits, primarily stimulation of the proliferation of lactic acid bacteria and bifidobacteria in the colon informs their significance as high value nutraceuticals in the food and pharmaceutical industry. In addition they are well known as useful components of important pharmaceutical products. There are two main ways of producing these sugars from biomass, which include enzymatic and non-enzymatic pretreatments. Each of the two processes has advantages and disadvantages. Enzymatic processes are associated with high costs, higher concentration of monomeric sugars, and low oligosaccharide yields while thermo-chemical processes are usually associated with undesirable byproducts such as furfural and lower oligosaccharide yields. In this paper we discuss the benefits and constraints for optimization of different methods for the production of oligosaccharides from biomass. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available