4.0 Review

The RsbRST stress module in bacteria: A signalling system that may interact with different output modules

Journal

Publisher

KARGER
DOI: 10.1159/000088837

Keywords

protein phosphorylation; two component regulatory system; phosphorelay; stressosome; anti-sigma factor

Ask authors/readers for more resources

In the Gram-positive bacterium Bacillus subtilis, the activity of the alternative sigma factor sigma(B) is triggered upon exposure of the bacteria to environmental stress conditions or to nutrient limitation. sigma(B) activity is controlled by protein-phosphorylation-dependent interactions of anti-sigma with anti-anti-sigma factors. Under stress conditions, the phosphatase RsbU triggers release of sigma(B) and thus induces the expression of stress genes. RsbU activity is controlled by three proteins, RsbR, RsbS and RsbT which form a supramolecular complex called the stressosome. Here we review the occurrence of the genes encoding the stressosome proteins (called the RsbRST module) in a wide variety of bacteria. While this module is linked to the gene encoding sigma(B) and its direct regulators in B. subtilis and its close relatives, genes encoding two-component regulatory systems and more complex phosphorelays are clustered with the RsbRST module in bacteria as diverse as cyanobacteria, bacteroidetes, proteobacteria, and deinococci. The conservation of the RsbRST module and its clustering with different types of regulatory systems suggest that the stressosome proteins form a signal sensing and transduction unit that relays information to very different output modules. Copyright (C) 2005 S. Karger AG, Basel.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available