4.3 Review

Pollenkitt - its composition, forms and functions

Journal

FLORA
Volume 200, Issue 5, Pages 399-415

Publisher

ELSEVIER GMBH
DOI: 10.1016/j.flora.2005.02.006

Keywords

pollenkitt; tryphine; tapetum; orbicules; pollen water content; carbohydrates; pollination; stigma

Ask authors/readers for more resources

Two types of sticky pollen coat material exist in angiosperms, both produced by the anther tapetum. Pollenkitt is the most common adhesive material present around pollen grains of almost all angiosperms pollinated by animals, whereas tryphine seems to be restricted only to Brassicaccae. Tapetal cell protoplasts have different patterns of development according to the products formed during their development and degeneration. If tryphine is formed, the tapetal cell protoplasts lose their individuality at the microspore stage. If pollenkitt is formed, their contents degenerate at later stages. Cell content is totally reabsorbed, when ripe pollen is not surrounded by any gluing material. Current knowledge of pollenkitt formation, deposition on pollen grains and chemical composition are reviewed and discussed. Methods for detecting this viscous fluid are also presented. The many functions of pollenkitt, deduced from personal observations and the literature, act in the period between anther opening and pollen hydration on the stigma; they are: (1) to hold pollen in the anther until dispersal; (2) to enable secondary pollen presentation; (3) to facilitate pollen dispersal; (4) to protect pollen from water loss; (5) to protect pollen from ultra-violet radiation; (6) to maintain sporophytic proteins responsible for pollen-stigma recognition inside exine cavities; (7) to protect pollen protoplasts from fungi and bacteria; (8) to keep together pollen grains during transport; (9) to protect pollen from hydrolysis and exocellular enzymes; (10) to render pollen attractive to animals; (11) to render pollen visible to animal eyes; (12) to hide pollen from animal eyes; (13) to avoid predation of pollen through smell; (14) to enable adhesion to insect bodies; (15) to enable pollen packaging by bees and to form corbicules; (16) to provide a digestible reward for pollinators; (17) to enable pollen clumps to reach the stigma; (18) to allow self-pollination; (19) to facilitate adhesion to the stigma; (20) to facilitate pollen rehydration. Depending on the developmental program of the species, these functions may act during pollen presentation, in relation to pollinators, during pollen dispersal and when pollen reaches the stigma. (c) 2005 Elsevier GmbH. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available