4.4 Article Proceedings Paper

Annular alpha-synuclein oligomers are potentially toxic agents in alpha-synucleinopathy. Hypothesis.

Journal

NEUROTOXICITY RESEARCH
Volume 7, Issue 1-2, Pages 59-67

Publisher

SPRINGER
DOI: 10.1007/BF03033776

Keywords

alpha-synuclein; Parkinson's disease; amyloid; multiple system atrophy; atomic force microscopy; neurodegeneration

Categories

Ask authors/readers for more resources

Recently, we demonstrated that soluble 30-50 nm-sized annular alpha-synuclein oligomers are released by mild detergent treatment from glial cytoplasmic inclusions (GCIs) purified from multiple system atrophy brain tissue (Pountney et al, J. Neurochem. 90:502, 2004). Dynamic antibody recognition imaging using a specific anti-alpha-synuclein antibody confirmed that the annular structures were positive for alpha-synuclein. This showed that pathological alpha-synucleinopathy aggregates can be a source of annular alpha-synuclein species. In contrast to pathological alpha-synuclein, recombinant a-synuclein yielded only spherical oligomers after detergent treatment, indicating a greater propensity of the pathological protein to form stable annular oligomers. In vitro, we found that Cal(2+) binding to monomeric a-synuclein, specifically amongst a range of different metal ions, induced the rapid formation of annular oligomers (Lowe et al., Protein Sci., 13:3245, 2004). Hence, alpha-synuclein speciation may also be influenced by the intracytoplasmic Cal(2+) concentration. We also showed that annular alpha-synuclein oligomers can nucleate filament formation. We hypothesize that soluble alpha-synuclein annular oligomers may be cytotoxic species, either by interacting with cell membranes or components of the ubiquitin proteasome system. The equilibrium between alpha-synuclein species may be influenced by intracellular Cal(2+) status, interaction with lipid vesicles or other factors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available