4.7 Review

Nucleic acid nanostructures: bottom-up control of geometry on the nanoscale

Journal

REPORTS ON PROGRESS IN PHYSICS
Volume 68, Issue 1, Pages 237-270

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0034-4885/68/1/R05

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM029554, R37 GM029554] Funding Source: Medline
  2. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R37GM029554, R01GM029554] Funding Source: NIH RePORTER

Ask authors/readers for more resources

DNA may seem an unlikely molecule from which to build nanostructures, but this is not correct. The specificity of interaction that enables DNA to function so successfully as genetic material also enables its use as a smart molecule for construction on the nanoscale. The key to using DNA for this purpose is the design of stable branched molecules, which expand its ability to interact specifically with other nucleic acid molecules. The same interactions used by genetic engineers can be used to make cohesive interactions with other DNA molecules that lead to a variety of new species. Branched DNA molecules are easy to design, and they can assume a variety of structural motifs. These can be used for purposes both of specific construction, such as polyhedra, and for the assembly of topological targets. A variety of two-dimensional periodic arrays with specific patterns have been made DNA nanomechanical devices have been built with a series of different triggers, small molecules, nucleic acid molecules and proteins. Recently, progress has been made in self-replication of DNA nanoconstructs, and in the scaffolding of other species into DNA arrangements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available