4.7 Article

Interactions of a cationic cellulose derivative with an ultrathin cellulose support

Journal

CARBOHYDRATE POLYMERS
Volume 92, Issue 2, Pages 1046-1053

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2012.10.026

Keywords

Cellulose model thin films; Cationic cellulose; Quartz crystal microbalance; Contact angle; XPS; AFM

Funding

  1. European Community [214015, 214653]

Ask authors/readers for more resources

The adsorption behavior of cellulose-4-[N-methylammonium]butyrate chloride (CMABC) on two hydrophilic substrates is studied, namely nanometric cellulose model thin films and silicon dioxide substrates. The adsorption is quantified in dependence of electrolyte concentration and pH value using a quartz crystal microbalance with dissipation (QCM-D). In case of CMABC, at high ionic strengths (25-100 mM NaCl) high adsorption is observed at pH 7 (Delta f(3): -15 to -17 Hz) while at lower ionic strengths (1-10 mM) less CMABC (Delta f(3): -2 to -12 Hz) is deposited on the cellulose surfaces as indicated by the frequency changes using QCM-D. A change in pH value from 7 to 8 reveals an increase in adsorption. Atomic force microscopy shows that the coating of cellulose thin films with CMABC changes the morphology from a fibrillar to a particle like structure on the surface. The surface wettability with water increases with an increasing amount of CMABC on the surface compared to neat cellulose model films. At lower pH values (3 and 5), CMABC does not adsorb onto the cellulose model thin films. XPS is used to validate the results and to determine the nitrogen content of the surfaces. In addition, adsorption of CMABC onto another hydrophilic and negatively charged substrate, silicon dioxide coated quartz crystals, cannot be detected at different pH values and electrolyte concentrations as proven by QCM-D. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available