4.5 Review

Plant root responses to three abundant soil minerals: Silicon, aluminum and iron

Journal

CRITICAL REVIEWS IN PLANT SCIENCES
Volume 24, Issue 4, Pages 267-281

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07352680500196017

Keywords

chelation; nutrient acquisition; metal detoxification; transporter

Categories

Ask authors/readers for more resources

Silicon (Si), aluminum (Al), and iron (Fe) are the three most abundant minerals in soil; however, their effects on plants differ because they are beneficial, toxic, and essential to plant growth, respectively. High accumulation of silicon in the shoots helps some plants to overcome a range of biotic and abiotic stresses. However, plants vary in their ability to take up Si from the soil and load it into the xylem and so the accumulation of silicon varies greatly between plant species. Aluminum toxicity is characterized by a rapid inhibition of root elongation but some species and even genotypes within species can tolerate Al toxicity better than others. While the mechanisms controlling this tolerance in most of the more resistant species are poorly understood, some plants are able to detoxify Al externally and/or internally by complexation with ligands or by pH changes in the rhizosphere. Iron is taken up from the soil by two efficient mechanisms called Strategy I and Strategy II, which operate in distinct phylogenic groups. Strategy I plants increase soil Fe solubility by releasing protons and reductants/chelators, such as organic acids and phenolics, into the rhizosphere, while Strategy II plants are characterized by the secretion of ferric chelating substances (phytosiderophores) coupled with a specific Fe3+ :chelate uptake system. In this review, the molecular mechanisms underlying root response to Si, Al, and Fe are described.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available