4.7 Article

Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum

Journal

CARBOHYDRATE POLYMERS
Volume 98, Issue 1, Pages 1011-1017

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2013.06.077

Keywords

Activation energy; Emulsion; Microencapsulation; Internal ionic gelation; Sodium alginate; Low acylated gellan gum

Funding

  1. CONACYT

Ask authors/readers for more resources

Sodium alginate (SA) at 2% (w/v) and low acylated gellan gum (LAG) at 0.2% (w/v) were used to microencapsulate Lactobacillus helveticus and Lactobacillus delbrueckii spp lactis by employing the internal ionic gelation technique through water-oil emulsions at three different stirring rates: 480,800 and 1200 rpm. The flow behavior of the biopolymer dispersions, the activation energy of the emulsion, the microencapsulation efficiency, the size distribution, the microcapsules morphology and the effect of the stirring rate on the culture viability were analyzed. All of the dispersions exhibited a non-Newtonian shear-thinning flow behavior because the apparent viscosity decreased in value when the shear rate was increased. The activation energy was calculated using the Arrhenius-like equation; the value obtained for the emulsion was 32.59 kJ/mol. It was observed that at 400 rpm, the microencapsulation efficiency was 92.83%, whereas at 800 and 1200 rpm, the stirring rates reduced the efficiency to 15.83% and 4.56%, respectively, evidencing the sensitivity of the microorganisms to the shear rate (13.36 and 20.05s(-1)). Both optical and scanning electron microscopy (SEM) showed spherical microcapsules with irregular topography due to the presence of holes on its surface. The obtained size distribution range was modified when the stirring rate was increased. At 400 rpm, bimodal behavior was observed in the range of 20-420 mu m; at 800 and 1200 rpm, the behavior became unimodal and the range was from 20 to 200 mu m and 20 to 160 mu m, respectively. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available