4.2 Article

Removal of tetracycline from aqueous solution by a Fe3O4 incorporated PAN electrospun nanofiber mat

Journal

JOURNAL OF ENVIRONMENTAL SCIENCES
Volume 28, Issue -, Pages 29-36

Publisher

SCIENCE PRESS
DOI: 10.1016/j.jes.2014.04.016

Keywords

Adsorption; Antibiotics; Electrospinning; Composite nanomaterial

Funding

  1. Hundred Talents Program of Chinese Academy of Sciences
  2. Key Project of Science and Technology Program of Fujian Province [2013H0054]
  3. Science and Technology Innovation and Collaboration Team Project of the Chinese Academy of Sciences

Ask authors/readers for more resources

Pollution of antibiotics, a type of emerging contaminant, has become an issue of concern, due to their overuse in human and veterinary application, persistence in environment and great potential risk to human and animal health even at trace level. In this work, a novel adsorbent, Fe3O4 incorporated polyacrylonitrile nanofiber mat (Fe-NFM), was successfully fabricated via electrospinning and solvothermal method, targeting to remove tetracycline crq, a typical class of antibiotics, from aqueous solution. Field emission scanning electron microscopy and X-ray diffraction spectroscopy were used to characterize the surface morphology and crystal structure of the Fe-NFM, and demonstrated that Fe-NFM was composed of continuous, randomly distributed uniform nanofibers with surface coating of Fe3O4 nanoparticles. A series of adsorption experiments were carried out to evaluate the removal efficiency of TC by the Fe-NFM. The pseudo-second-order kinetics model fitted better with the experimental data. The highest adsorption capacity was observed at initial solution pH 4 while relative high adsorption performance was obtained from initial solution pH 4 to 10. The adsorption of TC on Fe-NFM was a combination effect of both electrostatic interaction and complexation between TC and Fe-NFM. Freundlich isotherm model could better describe the adsorption isotherm. The maximum adsorption capacity calculated from Langmuir isotherm model was 315.31 mg/g. Compared to conventional nanoparticle adsorbents which have difficulties in downstream separation, the novel nanofiber mat can be simply installed as a modular compartment and easily separated from the aqueous medium, promising its huge potential in drinking and wastewater treatment for micro-pollutant removal. (C) 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available