4.6 Article

Exciton sizes of conducting polymers predicted by time-dependent density functional theory

Journal

PHYSICAL REVIEW B
Volume 71, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.71.033201

Keywords

-

Ask authors/readers for more resources

The electronic structure and size scaling of spectroscopic observables in conjugated polymers are investigated using time-dependent density functional theory. We show that local density approximations and gradient-corrected functionals do not have an effective attractive Coulomb interaction between photoexcited electron-hole pairs to form bound states and therefore do not reproduce finite exciton sizes. Long-range nonlocal and nonadiabatic density functional corrections (such as hybrid mixing with an exact Hartree-Fock exchange) are necessary to capture correct delocalization of photoexcitations in one-dimensional polymeric chains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available