4.5 Article

Hypoxia-induced downregulation of miR-30c promotes epithelial-mesenchymal transition in human renal cell carcinoma

Journal

CANCER SCIENCE
Volume 104, Issue 12, Pages 1609-1617

Publisher

WILEY
DOI: 10.1111/cas.12291

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [81072097]
  2. Shanghai Special Foundation for Outstanding Young Teachers [jdy10074]

Ask authors/readers for more resources

MicroRNAs (miRNAs), which negatively regulate protein expression by binding protein-coding mRNAs, have been integrated into cancer development and progression as either oncogenes or tumor suppressor genes. miR-30c was reported to be downregulated in several types of cancer. However, its role in human renal cell carcinoma (RCC) remains largely unknown. Here, we show that miR-30c is significantly downregulated in human RCC tissues and cell lines. We found that miR-30c downregulation could be induced by hypoxia in RCC cells in a hypoxia-inducible factors (HIFs) dependent manner. Repression of miR-30c through its inhibitor resulted in reduction of E-cadherin production and promotion of epithelial-mesenchymal transition (EMT), while overexpression of miR-30c inhibited EMT in RCC cells. We identified Slug as a direct target of miR-30c in RCC cells. Slug was upregulated in RCC tissues and its expression could be induced by hypoxia, which is consistent with downregulation of miR-30c by hypoxia. Forced overexpression of Slug in 786-O cells reduced E-cadherin production, and promoted EMT as well as cell migration. Moreover, Slug overexpression abrogated the inhibitory role of miR-30c in regulating EMT and cell migration, indicating miR-30c regulates EMT through Slug in RCC cells. Our findings propose a model that hypoxia induces EMT in RCC cells through downregulation of miR-30c, which leads to subsequent increase of Slug expression and repression of E-cadherin production, and suggest a potential application of miR-30c in RCC treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available