4.5 Article

Transcription factor Sp1 regulates expression of cancer-associated molecule CD147 in human lung cancer

Journal

CANCER SCIENCE
Volume 101, Issue 6, Pages 1463-1470

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1349-7006.2010.01554.x

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [30530720, 30772479, 30671099]
  2. National Basic Research Program of China [2009CB521704]

Ask authors/readers for more resources

CD147 is a novel cancer-associated biomarker that plays an important role in the invasion and metastasis of human lung cancer. In spite of its many known functions, little is known about CD147 transcriptional regulation. In this study, we explored the regulation of CD147 in human lung cancer tissues. Over 60% of the human lung cancer tissues expressed differential high levels of CD147. We then cloned the 5'-flanking region of the human CD147 gene and identified a critical promoter region at -108 to -42 which contained one binding site for Sp1, which was essential in up-regulating CD147 promoter activity. These results were proven by blocking Sp1 using RNAi or mithramycin A treatment and up-regulating Sp1 using transfection with eukaryotic expression vector. Consistent with the CD147 transcription activation, a high level of Sp1 expression was detected in lung cancer cell lines overexpressing CD147. Chromatin immunoprecipitation assay showed that much more Sp1 could bind to the CD147 promoter in 95-D with CD147 high expression than in SK-MES-1 with CD147 low expression. There was a significant positive correlation between CD147 expression and Sp1 expression level detected by immunohistochemistry (r = 0.831). Collectively, our results suggest that Sp1 is essential for regulating the CD147 gene expression in human lung cancer. (Cancer Sci 2010).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available