4.6 Article

Experimental characterization of frequency-dependent squeezed light

Journal

PHYSICAL REVIEW A
Volume 71, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.71.013806

Keywords

-

Ask authors/readers for more resources

We report on the demonstration of broadband squeezed laser beams that show a frequency-dependent orientation of the squeezing ellipse. Carrier frequency as well as quadrature angle were stably locked to a reference laser beam at 1064 nm. This frequency-dependent squeezing was characterized in terms of noise power spectra and contour plots of Wigner functions. The latter were measured by quantum state tomography. Our tomograph allowed a stable lock to a local oscillator beam for arbitrary quadrature angles with +/-1degrees precision. Frequency-dependent orientations of the squeezing ellipse are necessary for squeezed states of light to provide a broadband sensitivity improvement in third-generation gravitational-wave interferometers. We consider the application of our system to long-baseline interferometers such as a future squeezed-light upgraded GEO 600 detector.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available