4.5 Article

Shear stress induces internalization of E-cadherin and invasiveness in metastatic oesophageal cancer cells by a Src-dependent pathway

Journal

CANCER SCIENCE
Volume 100, Issue 6, Pages 1082-1087

Publisher

WILEY
DOI: 10.1111/j.1349-7006.2009.01160.x

Keywords

-

Categories

Funding

  1. Irish Cancer Society
  2. Higher Education Authority Ireland
  3. Health Research Board Ireland

Ask authors/readers for more resources

Metastatic disease is dependent on tumor cell migration through the venous and lymphatic systems and requires dynamic rearrangement of adherens junctions. Endocytosis of cadherins is a key mechanism to dynamically arrange adherens junctions, signaling, and motility in tumor cells; however, the role of shear in regulating this process in metastatic cells is unknown. In this study, the role of shear in regulating cell surface expression of E-cadherin was investigated. We found that exposure to venous shear (shear rate, 200/s) induced internalization of E-cadherin in adherent metastatic oesophageal tumor cells (OC-1 tumor cell line). Internalized E-cadherin was found localized to Rab5-positive endosomes and was not present in lysosomes. As the Src family of tyrosine kinase have been implicated in regulating cadherin expression, we investigated the role of shear in regulating E-cadherin through Src activity. Pretreatment of OC-1 cells with the specific Src kinase inhibitor 4-amino-5- (4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1) prevented shear-induced internalization of E-cadherin. Direct measurement of Src activity (phosphorylation on Y416) showed that Src is activated in sheared OC-1 cells and that the shear-induced increase in phospho-Src is inhibited by the presence of PP1. Moreover, we show that shear stress significantly increased the invasive capacity of OC-1 cells (P < 0.001), a process inhibited by the presence of PP1. These results indicate a novel role for shear in regulating the endocytosis of E-cadherin and invasiveness in metastatic cells. (Cancer Sci 2009; 100: 1082-1087).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available