4.5 Article

Metformin suppresses intestinal polyp growth in ApcMin/+ mice

Journal

CANCER SCIENCE
Volume 99, Issue 11, Pages 2136-2141

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1349-7006.2008.00933.x

Keywords

-

Categories

Funding

  1. Ministry of Health, Labor and Welfare, Japan
  2. National Institute of Biomedical Innovation (NBIO)
  3. Ministry of Education, Culture, Sports, Science and Technology, Japan (KIBAN-B)
  4. Princess Takamatsu Cancer Research Fund

Ask authors/readers for more resources

Metformin is a biguanide derivative that is widely used in the treatment of diabetes mellitus. One of the pharmacological targets of metformin is adenosine monophosphate-activated protein kinase (AMPK). We investigated the effect of metformin on the suppression of intestinal polyp formation in Apc(Min/+) mice. Administration of metformin (250 mg/kg) did not reduce the total number of intestinal polyp formations, but significantly reduced the number of intestinal polyp formations larger than 2 mm in diameter in Apc(Min/+) mice. To examine the indirect effect of metformin, the index of insulin resistance and serum lipid levels in Apc(Min/+) mice were assessed. These factors were not significantly attenuated by the treatment with metformin, indicating that the suppression of polyp growth is not due to the indirect drug action. The levels of tumor cell proliferation as determined by 5-bromodeoxyuridine and proliferating cell nuclear antigen immunohistochemical staining, and apoptosis, via transferase deoxytidyl uridine end labeling staining, in the polyps of metformin-treated mice were not significantly different in comparison to those of control mice. Gene expression of cyclin D1 and c-myc in intestinal polyps were also not significantly different between those two groups. In contrast, metformin activated AMPK in the intestinal polyps, resulting in the inhibition of the activation of mammalian target of rapamycin, which play important roles in the protein synthesis machinery. Metformin suppressed the polyp growth in Apc(Min/+) mice, suggesting that it may be a novel candidate as a chemopreventive agent for colorectal cancer. (Cancer Sci 2008; 99: 2136-2141).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available