4.4 Article

Evaluation of radon adsorption characteristics of a coconut shell-based activated charcoal system for radon and thoron removal applications

Journal

JOURNAL OF ENVIRONMENTAL RADIOACTIVITY
Volume 142, Issue -, Pages 87-95

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jenvrad.2014.12.017

Keywords

Radon; Thoron; Activated charcoal; Adsorption; Mitigation; Breakthrough time (T); Adsorption coefficient (K)

Funding

  1. MoU between BARC, Mumbai and Mangalore University

Ask authors/readers for more resources

Radon (Rn-222) thoron (Rn-220), and their decay products contribute a major fraction (more than 50%) of doses received from ionisation radiation in public domain indoor environments and occupation environments such as uranium mines, thorium plants, and underground facilities, and are recognised as important radiological hazardous materials, which need to be controlled. This paper presents studies on the removal of Rn-222 and Rn-220 from air using coconut shell-based granular activated charcoal cylindrical adsorber beds. Experiments were conducted to evaluate the Rn-222 and Rn-220 adsorption characteristics, and the mitigation efficiency of coconut-based activated charcoal available in India. The performance parameters evaluated include breakthrough time (T) and adsorption coefficient (K), and degassing characteristics of the charcoal bed of varying dimensions at different flow rates. While the breakthrough for Rn-222 occurred depending on the dimension of the adsorber bed and flow rates, for Rn-220, the breakthrough did not occur. The breakthrough curve exhibited a stretched S-shape response, instead of the theoretically predicted sharp step function. The experiments confirm that the breakthrough time individually satisfies the quadratic relationship with respect to the diameter of the bed, and the linear relationship with respect to the length, as predicted in the theory. The K value varied in the range of 2.3-4.12 m(3) kg(-1) with a mean value of 2.99 m(3) kg(-1). The K value was found to increase with the increase in flow rate. Heating the charcoal to similar to 100 degrees C resulted in degassing of the adsorbed Rn-222, and the K of the degassed charcoal and virgin charcoal were found to be similar with no deterioration in performance indicating the re-usability of the charcoal. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available