4.8 Article

Kinetics of tetramolecular quadruplexes

Journal

NUCLEIC ACIDS RESEARCH
Volume 33, Issue 1, Pages 81-94

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gki148

Keywords

-

Ask authors/readers for more resources

The melting of tetramolecular DNA or RNA quadruplexes is kinetically irreversible. However, rather than being a hindrance, this kinetic inertia allows us to study association and dissociation processes independently. From a kinetic point of view, the association reaction is fourth order in monomer and the dissociation first order in quadruplex. The association rate constant k (on), expressed in M(-3.)s(-1) decreases with increasing temperature, reflecting a negative activation energy (E (on)) for the sequences presented here. Association is favored by an increase in monocation concentration. The first-order dissociation process is temperature dependent, with a very positive activation energy E (off), but nearly ionic strength independent. General rules may be drawn up for various DNA and RNA sequence motifs, involving 3-6 consecutive guanines and 0-5 protruding bases. RNA quadruplexes are more stable than their DNA counterparts as a result of both faster association and slower dissociation. In most cases, no dissociation is found for G-tracts of 5 guanines or more in sodium, 4 guanines or more in potassium. The data collected here allow us to predict the amount of time required for 50% (or 90%) quadruplex formation as a function of strand sequence and concentration, temperature and ionic strength.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available