4.4 Review

The evolutionary origin of cardiac chambers

Journal

DEVELOPMENTAL BIOLOGY
Volume 277, Issue 1, Pages 1-15

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2004.09.026

Keywords

heart; cardiac chambers; evolution; development; retinoic acid; inflow; outflow; chordates; vertebrates

Ask authors/readers for more resources

Identification of cardiac mechanisms of retinoic acid (RA) signaling, description of homologous genetic circuits in Ciona intestinalis and consolidation of views on the secondary heart field have fundamental, but still unrecognized implications for vertebrate heart evolution. Utilizing concepts from evolution, development, zoology, and circulatory physiology, we evaluate the strengths of animal models and scenarios for the origin of vertebrate hearts. Analyzing chordates, lower and higher vertebrates, we propose a paradigm picturing vertebrate hearts as advanced circulatory pumps formed by segments, chambered or not, devoted to inflow or outflow. We suggest that chambers arose not as single units, but as components of a peristaltic pump divided by patterning events, contrasting with scenarios assuming that chambers developed one at a time. Recognizing RA signaling as a potential mechanism patterning cardiac segments, we propose to use it as a tool to scrutinize the phylogenetic origins of cardiac chambers within chordates. Finally, we integrate recent ideas on cardiac development such as the ballooning and secondary/anterior heart field paradigms, showing how inflow/outflow patterning may interact with developmental mechanisms suggested by these models. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available