4.5 Article

Neuroprotection of adult rat dorsal root ganglion neurons by combined hypothermia and alkalinization against prolonged ischemia

Journal

NEUROSCIENCE
Volume 132, Issue 1, Pages 115-122

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2005.01.003

Keywords

anoxia; neurotoxicity; neuron death

Categories

Funding

  1. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [S06GM008224] Funding Source: NIH RePORTER
  2. NIGMS NIH HHS [S06GMO8224] Funding Source: Medline

Ask authors/readers for more resources

Ischemia and ischemia-induced secondary events, such as acidosis and excessive activation of receptors by amino acids, trigger neuron death. The isolation and dissociation of dorsal root ganglion (DRG) involves time during which the neurons are ischemic due to being densely packed within the intact DRG and surrounded by a connective tissue coat. Thus, the longer the time between killing the host animal and when the DRG are dissociated, the longer the neurons are ischemic and exposed to ischemia-induced secondary causes of neuron death. It is well established that hypothermia and alkalinization each separately protect neurons from ischemia and ischemia-induced secondary causes of neuron death, but there are no data on the neuroprotection provided by simultaneous hypothermia and alkalinization. The present experiments were designed to determine the combination of hypothermic and alkaline conditions that yield the largest number of viable neurons dissociated from intact DRG maintained ischemic for up to 4 h. Hypothermia (20 degrees C > 15 degrees C > 37 degrees C) and alkalinization (pH 9.3 > pH 8.3 > pH 7.4) increased the yield of viable neurons compared with the yield from DRG maintained under physiological conditions. Hypothermia and alkalinization combined (20 degrees C/pH 9.3) provided the greatest neuroprotection with a yield of viable neurons after 1 h of ischemia 2.5-fold larger than that from DRG maintained under physiological conditions (37 degrees C/pH 7.6). Over 4 h of ischemia, the yield of viable neurons from DRG maintained under both hypothermic/alkaline and physiological conditions decreased in a linear manner, but those at 20 degrees C/pH 9.3 had a 4.5-fold greater yield of viable neurons than those at 37 degrees C/pH 7.6. Thus, combined hypothermia and alkalinization provide significantly greater protection against ischemia and ischemia-induced secondary causes of neuron death than either alone. (c) 2005 Published by Elsevier Ltd on behalf of IBRO.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available