4.5 Article

The differential response of astrocytes within the vestibular and cochlear nuclei following unilateral labyrinthectomy or vestibular afferent activity blockade by transtympanic tetrodotoxin injection in the rat

Journal

NEUROSCIENCE
Volume 130, Issue 4, Pages 853-865

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2004.08.052

Keywords

glia; neuronal activity; post-lesional plasticity; vestibular compensation; deafferentation; axotomy

Categories

Ask authors/readers for more resources

In this study, we investigated whether changes in the vestibular neuronal activity per se influence the pattern of astrocytes morphology, glial fibrillary acidic protein (GFAP) expression and ultimately their activation within the vestibular nuclei after unilateral transtympanic tetrodotoxin (TTX) injections and after unilateral inner ear lesion. The rationale was that, theoretically the noninvasive pharmacological functional blockade of peripheral vestibular inputs with TTX, allowed us to dissociate the signals exclusively related to the shutdown of the resting activity of the first-order vestibular neurons and from neuronal signals associated with transganglionic changes in first order vestibular neurons induced by unilateral labyrinthectomy (UL). Since the cochlea was removed during the surgical procedure, we also studied the astrocytic reaction within the deafferented cochlear nuclei. No significant changes in the distribution or relative levels of GFAP mRNA expression, relative levels of GFAP protein or immunoreactivity for GFAP were found in the ipsilateral vestibular nuclei at any post-TTX injection times studied. In addition, no sign of microglia activation was observed. In contrast, a robust increase of the distribution and relative levels of GFAP mRNA expression, protein levels and immunoreactivity was observed in the deafferented vestibular and cochlear nuclei beginning at 1 day after inner ear lesion. GFAP mRNA expression and immunoreactivity in the cochlear nucleus was qualitatively stronger than in the ipsilateral vestibular nuclei. The results suggest that astrocyte activation in the vestibular nuclei is not related to drastic changes of vestibular nuclei neuronal activity per se. Early trans-ganglionic changes due to vestibular nerve dendrites lesion provoked by the mechanical destruction of vestibular receptors, most probably induced the glial reaction. Its functional role in the vestibular compensation process remains to be elucidated. (C) 2004 Published by Elsevier Ltd on behalf of IBRO.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available