4.5 Article

Early amygdala damage disrupts performance on medial prefrontal cortex-related tasks but spares spatial learning and memory in the rat

Journal

NEUROSCIENCE
Volume 130, Issue 3, Pages 581-590

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2004.09.022

Keywords

amygdala; neonatal lesion; rat; neurodevelopmental disorders

Categories

Ask authors/readers for more resources

Recent studies have demonstrated that the postnatal development of connections between the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) mature around postnatal days 13-15 (pd13-15), whereas these between the BLA and other structures such as the nucleus accumbens and the mediodorsal thalamus are completed by pd7. Accordingly, it is hypothesized that mPFC cytoarchitecture and hence its function may be specifically affected by neonatal (i.e. on pd7) but not later induced (i.e. on pd21) damage to the BLA. To test this hypothesis, rats received excitotoxic lesions to the BLA on either pd7 or pd21 and were subjected to two tests putatively sensitive to mPFC dysfunction, namely food hoarding and spontaneous alternation. In addition, rats were tested for spatial learning and memory, to determine any possible effects on hippocampal function. Consistent with the documented effects of mPFC lesions, pd7 damage to the BLA impaired spontaneous alternation and food hoarding performance, an effect that was not found in rats with BLA lesions induced on pd21. Spatial learning and memory, however, were not affected by the (neonatal) lesion procedure. Together, these results indicate that neonatal BLA damage affects species-specific sequential behavior and flexibility, which may be attributed to abnormal functioning of the mPFC. (C) 2005 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available