4.5 Article

Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: Implications for ionic homeostasis and potassium siphoning

Journal

NEUROSCIENCE
Volume 136, Issue 1, Pages 65-86

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2005.08.027

Keywords

confocal microscopy; freeze fracture; immunofluorescence; immunogold labeling; rodent

Categories

Funding

  1. NINDS NIH HHS [R01 NS038121, R01 NS044395, R01 NS044010, NS38121, R56 NS044395, NS44395, NS44010] Funding Source: Medline
  2. NATIONAL CENTER FOR RESEARCH RESOURCES [S10RR015706] Funding Source: NIH RePORTER
  3. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS038121, R56NS044395, R01NS044010, R01NS044395] Funding Source: NIH RePORTER

Ask authors/readers for more resources

The subcellular distributions and co-associations of the gapjunction-forming proteins connexin47 and connexin32 were investigated in oligodendrocytes of adult mouse and rat CNS. By confocal immunofluorescence light microscopy, abundant connexin47 was co-localized with astrocytic connexin43 on oligodendrocyte somata, and along myelinated fibers, whereas connexin32 without connexin47 was co-localized with contactin-associated protein (caspr) in paranodes. By thin-section transmission electron microscopy, connexin47 immunolabeling was on the oligodendrocyte side of gap junctions between oligodendrocyte somata and astrocytes. By freeze-fracture replica immunogold labeling, large gap junctions between oligodendrocyte somata and astrocyte processes contained much more connexin47 than connexin32. Along surfaces of internodal myelin, connexin47 was several times as abundant as connexin32, and in the smallest gap junctions, often occurred without connexin32. In contrast, connexin32 was localized without connexin47 in newly-described autologous gap junctions in Schmidt-Lanterman incisures and between paranodal loops bordering nodes of Ranvier. Thus, connexin47 in adult rodent CNS is the most abundant connexin in most heterologous oligodendrocyte-to-astrocyte gap junctions, whereas connexin32 is the predominant if not sole connexin in autologous (reflexive) oligodendrocyte gap junctions. These results clarify the locations and connexin compositions of heterologous and autologous oligodendrocyte gap junctions, identify autologous gap junctions at paranodes as potential sites for modulating paranodal electrical properties, and reveal connexin47-containing and connexin32-containing gap junctions as conduits for long-distance intracellular and intercellular movement of ions and associated osmotic water. The autologous gap junctions may regulate paranodal electrical properties during saltatory conduction. Acting in series and in parallel, autologous and heterologous oligodendrocyte gap junctions provide essential pathways for intra- and intercellular ionic homeostasis. (c) 2005 Published by Elsevier Ltd on behalf of IBRO.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available