4.5 Article

Regulation of neuronal death and calcitonin gene-related peptide by fibroblast growth factor-2 and FGFR3 after peripheral nerve injury: Evidence from mouse mutants

Journal

NEUROSCIENCE
Volume 134, Issue 4, Pages 1343-1350

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2005.04.066

Keywords

FGF-2 system; CGRP; dorsal root ganglion; injury; degeneration; knock-out mouse

Categories

Ask authors/readers for more resources

The presence and regulation of basic fibroblast growth factor and its high-affinity tyrosine kinase receptor FGFR3 in sensory neurons during development and after peripheral nerve injury suggest a physiological role of the fibroblast growth factor-2 system for survival and maintenance of sensory neurons. Here we investigated L5 spinal ganglia of intact and lesioned fibroblast growth factor-2 knock-out and FGFR3 knock-out mice. Quantification of sensory neurons in intact L5 spinal ganglia revealed no differences between wild-types and mutant mice. After sciatic nerve axotomy, the normally occurring neuron loss in wildtype mice was significantly reduced in both knock-out strains suggesting that fibroblast growth factor-2 is involved in neuronal death mediated via FGFR3. In addition, the number of chromatolytic and eccentric cells was significantly increased in fibroblast growth factor-2 knock-out mice indicating a transient protection of injured spinal ganglia neurons in the absence of fibroblast growth factor-2. The expression of the neuropeptide calcitonin gene-related peptide in sensory neurons of intact fibroblast growth factor-2 knock-out and FGFR3 knock-out mice was not changed in comparison to adequate wild-types. Fibroblast growth factor-2 wild-type and FGFR3 wild-type mice showed a lesion-induced decrease of calcitonin gene-related peptide-positive neurons in ipsilateral L5 spinal ganglia whereas the loss of calcitonin gene-related peptide-immunoreactive sensory neurons is reduced in the absence of fibroblast growth factor-2 or FGFR3, respectively. In addition, FGFR3 wild-type and knock-out mice displayed a contralateral reduction of the neuropeptide after axotomy. These results suggest that endogenous fibroblast growth factor-2 and FGFR3 are crucially involved in the regulation of survival and calcitonin gene-related peptide expression of lumbar sensory neurons after lesion, but not during development. (c) 2005 Published by Elsevier Ltd on behalf of IBRO.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available